THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Chloride Induced Corrosion of Reinforcement Steel in Concrete Threshold Values and Ion Distributions at the Concrete-Steel Interface
نویسنده
چکیده
The chloride threshold value (Cth), or critical chloride content, is defined as the chloride concentration at the depth of the reinforcement, which initiates the depassivation of steel in concrete. However, very limited information is available regarding the chloride distributions at the interface with the steel. The main objective of this work is to improve the knowledge and understanding about the mechanisms leading to depassivation of steel in concrete, by studying the influence of the steel surface condition and the concrete-steel interface on the corrosion initiation and the chloride distributions along the concrete-steel interface at the time of depassivation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for spatial resolved chloride profiling in cementitious materials. A range of materials with increasing degree of heterogeneity (i.e. cement paste, mortar and concrete) and exposed to chlorides under different conditions (i.e. mixed-in, diffused and migrated) was studied. The system was optimized for maximum chloride sensitivity, while allowing for the detection of other elements such as calcium and iron. At a scan speed of 100 μm/s, a spatial resolution of 300-400 μm and limits of detection of 0.05 wt% of cement were determined. The chloride distributions along the concrete-steel interface and possible differences between passive and active regions were studied, for different steel surface conditions under free corrosion conditions as well as under potentiostatic control. The results have shown that along the interface, a range of chloride concentrations can be expected, with higher values around the corroding active sites. It was suggested that chlorides preferentially accumulate at the anodic regions even prior to depassivation, leading to pitting corrosion. A local migration mechanism was proposed to account for the chloride build-up around the anode regions, due to the formation of local potential gradients on the passive layer of the steel as a result of differences in the moisture content and oxygen availability, concentration of aggressive species and metallurgical properties, such as inclusions or mill-scale along the steel. In particular the steel surface condition and the presence of air voids at the concrete-steel interface were recognized as major factors influencing the development of potential gradients along the steel surface.
منابع مشابه
Influence of cement content on concrete performance in corrosive environments (sea water)
In this study, the effect of cement content on concrete performance in corrosive environments is investigated on concrete mixtures having the same water/cement (w/c) ratio. Three w/c ratios (0.40, 0.45 and 0.50) were used and for each w/c ratio three mixtures were prepared with cement contents 350, 400 and 450 kg/m3. The compressive strength, electrical resistivity and chloride diffusivity of t...
متن کاملElectrochemical Assessment of Concrete Ternary Inhibitors Used in Retarding Corrosion of Steel Reinforcement
Corrosion of steel reinforcement in concrete is generally considered as an electrochemical process which reduces the service life of a structure exposed to chloride ions attack. Therefore, laboratory experiments were performed in order to ascertain the effectiveness and sustainability of ternary inhibitors (calcium nitrite, ethanolamine and eco-friendly green Bambusa Arundinacea) in protecting ...
متن کاملAssessing the Performance of Corroding RC Bridge Decks: A Critical Review of Corrosion Propagation Models
Corrosion of steel reinforcement is one of the most prevalent causes of reinforced concrete (RC) structures deterioration in chloride-contaminated environments. As a result, evaluating the impact of any possible corrosion-induced damages to reinforced concrete bridges strongly affects management decisions: such as inspection, maintenance and repair actions. The corrosion propagation phase is a ...
متن کاملThe Effect of Chloride Ions Concentration on the Electrochemical Behavior of AISI 410 Stainless Steels in Simulated Concrete Pore Solution
The effect of chloride ions concentration on the electrochemical behavior of AISI 410 stainless steel in the simulated concrete pore (0.1 M NaOH + 0.1 M KOH) solution was investigated by various electrochemical methods such as Potentiodynamic polarization, Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves revealed that increasing chlori...
متن کاملINVESTIGATION ON THE MIXTURE OF CALCIUM AND AMMONIUM NITRATES AS STEEL CORROSION INHIBITOR IN SIMULATED CONCRETE PORE SOLUTION
Abstract: Despite having a number of advantages, reinforced concrete can suffer rebar corrosion in high–chloride media, resulting in failure of reinforced concrete structures. In this research the corrosion inhibition capability of the mixture of calcium and ammonium nitrate of steel rebar corrosion was investigated in the simulated concrete pore solution. Cyclic polarization and Electroche...
متن کامل